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Abstract. The electronic g-tensors for NO2, CO + and HzO + are calculated at the 
restricted open-shell Hartree-Fock (ROHF) level using the Rayleigh-Schr/Sdinger 
perturbation approach. All known first- and second-order contributions have been 
evaluated, including the relativistic mass correction, one- and two-electron spin 
Zeeman gauge correction terms, and one- and two-electron second-order terms. 
Substantial code development has been necessary, including an integral routine for 
computing the two-electron spin-Zeeman gauge correction term. 

Calculations have been done using triple zeta and quadruple zeta basis sets 
with additional polarization and semi-diffuse functions. Effective gauge invariance 
is obtained by placing the gauge origin at the molecule's electronic charge centroid. 
Excited state energies in the sum-over-states expansion are expressed using deter- 
minantal energies, thus avoiding the non-uniqueness of ROHF eigenvalues. 

Our results successfully reproduce trends in gas phase g-shifts (Ag  = g - go). 

However, discrepancies between our calculated g-shifts and experimental ones, 
sometimes on the order of 50%, point to the need for a correlated treatment. 

Key words: Electronic g-tensor - Zeeman effect - Gauge invariance - Hartree- 
Fock wavefunctions - Magnetic properties 

1 Introduction 

The focus of electron spin resonance (ESR) spectroscopy is the study of microwave 
resonance phenomena in paramagnetic molecules. The observed resonance in- 
volves transitions between different ms levels of the same molecular spin state, 
which are split by the magnetic field (B) of the ESR spectrometer. This splitting, 
known as the electronic Zeeman effect, may be parametrized by electronic 
g-tensors (g) as follows 

A E  = I . t B S ' g ' B ,  (1) 

where #B is the Bohr magneton and S is the molecule's spin angular momentum 
vector. 

Although g-tensors are perhaps the most fundamental of all ESR parameters, 
they have been the subject of surprisingly few ab  in i t io  studies [-1-4]. 
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The approaches used for g-tensor calculations include Rayleigh-Schr~Sdinger 
perturbation theory (RSPT) [1-5], finite perturbation theory (also called 
Hartree-Fock perturbation theory) [-3, 5] and Green's function techniques [6]. 
Despite the success of finite perturbation theory in chemical shift calculations 
[-7, 8], it has not displayed any particular advantage when applied to the g-tensor 
problem [-3, 5]. Instead, the consensus generally favours the Rayleigh-SchriSdinger 
approach [-1-5]. 

The RSPT g-tensor expansion is constructed from selected Breit-Pauli oper- 
ators. The expansion is dominated by the spin-Zeeman interaction, which contrib- 
utes in first-order. Also included in first-order are the relativistic mass correction 
to the spin-Zeeman (AgRMC-SZ, not to be confused with the relativistic mass cor- 
rection to kinetic energy), and one- and two-electron gauge terms (Ag6c-sz(le) 
and AgGc- sz (2e)). Second-order contributions (Ag2 o (le) and A92 o (2e)) involve the 
mixing of the orbital Zeeman interaction with one- and two-electron spin-orbit 
interactions. 

No previous g-tensor calculations have included all such correction terms. 
Hayden and McCain [1] and Ishii et al. [3] incorporated only second-order terms. 
Lushington et al. [4] used only one-electron contributions. The work of Moores 
and McWeeny [-2] encompassed all terms except Aga~tc-sz. 

In this work, we have calculated the electronic g-tensors for NO2, CO + 
and H2 O+ at the Hartree-Fock level using an RSPT expansion complete to 
second-order. This has required the derivation and implementation of integral code 
for the two-electron spin-Zeeman gauge correction term (AgGc-sz (2e)), described 
in detail elsewhere [9]. 

For these calculations, we have exploited a technique of non-arbitrary gauge 
selection to attain approximately gauge invariant results, and have used large basis 
sets with polarization and semi-diffuse functions. 

A basis set study is provided for NO2. 

2 Theory 

As Eq. (1) implies, the crux of the electronic Zeeman effect involves an interaction 
of the external magnetic field (B) with an electron's spin (S). For a free electron, the 
effect can be described by the simple Hamiltonian 

Hz . . . . .  ~ - "  g¢ gBS" B, (2) 

where gc = 2.002319 is the free-electron g-value. 
For electrons in a bound environment, however, this simple description is 

perturbed by various other magnetic effects. As a result, the proportionality may 
deviate somewhat from go and, except in isotropic cases (such as isolated atoms), 
the effect becomes directionally dependent. The magnetic perturbations causing 
this include spin-spin and spin-orbit coupling, and the interactions of the external 
field with nuclear spin and electron orbital motion. In practice, however, nuclear 
spin effects are usually determined separately as hyperfine coupling. As well, the 
spin-spin interaction is only present in systems with at least two unpaired elec- 
trons. Therefore, the electronic Zeeman effect for molecules with one unpaired 
electron can be described by the spin Hamiltonian 

H z e e m a n  ~ H '  ' ' sz + Hoz + Hso. (3) 
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In the above, H~z describes interactions between field and electron spin magnetic 
moment, Hbz, relates the mixing of the field with the orbital magnetic moment, and 
H~o accounts for spin-orbit coupling. 

Such interactions are expressed at a non-relativistic level in terms of Breit-Pauli 
operators, derived by reducing the Breit equation to the second Pauli limit. 
H~z interactions are described by a spin-Zeeman operator (Hsz), and one- and 
two-electron gauge corrections (Hac-sz (le) and HGc-sz (2e)). Similarly, H~o is 
modelled by one- and two-electron spin-orbit operators (Hso (le) and Hso (2e)), 
while H3z translates to the non-relativistic Hoz operator. 

One also finds that including a relativistic mass correction (HRMc-SZ) to the 
spin-Zeeman interaction can sometimes play an important role in describing 
the electronic Zeeman behaviour [4, 10]. A similar correction may be made to 
Hoz [11], but it has been found to have negligible contribution [12]. 

In summary, the Hamiltonian necessary for a proper description of the elec- 
tronic Zeeman effect in a doublet molecule includes the following interactions: 

Hzeem,n = Hsz + HRMC-SZ + HGc-sz(le) + H~c-sz(2e) 

+ Hso(le) + Hso(2e) + Hoz. (4) 

Expressions for these operators are given elsewhere [11]. 
In the Rayleigh-SchriSdinger approach, Hz . . . . .  is treated as a perturbation to 

the zeroth-order (Hartree-Fock) Hamiltonian 

H = n 0 + nzeeman (5) 

and energetic contributions may be expanded to nth-order. Hso (le), Hso (2e) and 
Hoz do not contribute in first-order, hence we have 

E (1)= (Wolnszl~o)  + (TS0IHRMc-szIt/tO) + (t/tolH~c-sz(le)lTJo) 

+ (~Uoln~c_sz(2e) I ~o7, (6) 

while second-order contributions include 

E (z) = 2 ~ (~olHso(le)  l ~,> (~, lHozl  ~ o > / ( E .  - Eo) 
n 

+ 2~(~olHso(2e)l~,>('e,,Inozl~o>/(E,,-Eo), (7) 
n 

where 7Jo is the ground state Hartree-Fock wavefunction of energy Eo, and En is 
the determinantal energy of a singly excited configuration ~n. Note that double 
excitations do not contribute to the sum-over-states expansion since, although they 
can be mixed by the two-electron spin-orbit operators, the corresponding orbital 
Zeeman matrix element is zero. 

Third-order contributions have also been derived [13], but are small compared 
to first- and second-order terms [14]. 

Since 9-tensors are independent of spin and field, one factors S and B out of 
Eqs. (6) and (7). This leaves the following expression for elements of the electronic 
9-tensor: 

gab = gec~ab -I- AgRMC-SZ •ab + Ag~bc-sz(le) + Ag~bc-sz(2e) 
a b  + Ag~bo(le) + Ag2o(2e), (8) 
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where a, b e {x, y, z}, 6 is the Kronecker delta and go (the free-elecron 9-factor) is 
the expectation value of the spin-field reduced spin-Zeeman term. All A 9 contribu- 
tions are described explicitly elsewhere [4]. 

3 Computation 

The ground state g-tensors of three radicals have been studied in this work, 
including NO2 (2A1), H20  + (ZB1) and CO + (2Z+). Hartree-Fock wavefunctions 
were obtained with the HONDO-8 package [-15]. Calculation of one-electron 
integrals was done with the MAGOPS package of Dykstra and Augspurger [16]. 
The EAGLE program of Chandra, Buenker, Marian and Hess [1%19] was used to 
generate two-electron spin-orbit integrals. All supplementary computation, includ- 
ing our newly derived and implemented code for Ag~c-sz (2e) [20], was done with 
GSTEPS, the suite of FORTRAN programs developed during this research. 

For NO2, g-tensors produced with several basis sets were compared, including 
the STO-4G basis of Stewart [21], the split valence (Ss, 4p )~  [3s, 2p] MIDI-4 
basis [22], the Huzinaga-Dunning (10s, 6p)~ [Ss, 4p] set [23], the Huzinaga- 
Dunning set with additional two-membered polarization functions [24], and the 
(10s, 6p, 4d) ~ [5s, 3p, 2d] basis by Sadlej 1"25]. 

For CO + and H20 +, we have used the (12s, 7p) ~ [7s, 4p]((6s) ~ [4s] for H) 
basis sets devised by Thakkar et al. [26], supplemented with (Is, 2p, 3d)((ls, 2p) for 
H) polarization and diffuse valence functions of Liu and Dykstra [27]. 

For the basis set study on NOz, the molecule's experimental geometry 
(RNo = 2.25612 bohr, /--oyo = 133.8 °) was used. In addition, a calculation was 
done with Sadlej's basis using a geometry (RNo = 2.18856 bohr, /oNo = 136.8 °) 
optimized for that basis. For CO + and Hz O+ the geometries used (Rco = 2.10723 
bohr for CO + and Roll = 1.88099 bohr, /--Hon = 109.4 ° for H20 +) were those 
optimized for Thakkar et al.'s basis. 

Some Breit-Pauli operators are gauge dependent. The expectation value of the 
operator may therefore vary depending on the selection of an origin (gauge) of the 
coordinate system. The size of this dependence for a gauge shift from C = (0, 0, 0) 
bohr to C = (1, 1, 1) bohr is calculated according to an expression derived in one of 
our prior papers [4 ] .  

The  proper choice of gauge origin is an important consideration for our 
calculations. Luzanov et al. 1-28] have given a theoretical rationale to suggest that 
the ideal location of gauge is given by the molecule's electronic charge centroid 
(Xe, Ye, Ze), where 

N 

xo = ( l /N) (Tq ~ x,l~P). (9) 
i = 1  

This choice had previously been demonstrated, for moderately gauge dependent 
calculations, to yield a good approximation to gauge invariant results [29-31]. 

Therefore, in all of our calculations the gauge origin was chosen to reside at the 
electronic charge centroid (ECC) of the molecule. Coordinate systems were chosen 
such that NO2 and H20 + lie in the yz-plane, with the z-axis aligned on the 
molecule's principal symmetry axis. 

At the Hartree-Fock level, the most appropriate method for describing the 
manifold of excited states kv, in Eq. (7) is by varying the occupancy of the ground 
state orbitals. For the excitation ;(, ~ ~(s, the spin-orbit interaction becomes 

(~olHsolT",,) = (k~olHsolk~) = (z, lHsolZ~) (10) 
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and the excitation energy is best described in terms of determinantal  energies 

Eo - - E .  = Eo --E~ = (~golnol~o) - (7 '~ lno lq '~ ) .  (11) 

4 Results and discussion 

The t reatment  described above does not  account  for intermolecular interactions, as 
are sometimes impor tan t  in solid or  liquid state ESR determination. As a result, it 
is expected that  our  model  should be best suited to the description of gas phase 
g-tensor data. These were obtained from spin rotat ion data  [32-35]  using the Curl 
equat ion [36]. F o r  comparison,  Ne  matrix isolation data  for NO2 [37] and CO + 
[33] will also be provided. 

In  Table 1, our  calculated Ag-values for NO2, CO + and Hz O+ are presented 
and compared  with bo th  spin rota t ion and matrix isolation data. In general, the 
calculated values reflect the trends in experimental numbers.  In  the case of H 2 0  +, 
the computed  values are in good  agreement  with the spin rota t ion data, except for 
A g  xx  where the signs disagree. For  NO2 and CO +, the calculated g-shifts are all 
of the correct  sign; however  A g  :'x- and AgYY-values are only 49 -58% the size of 
cor responding  gas phase values. Overall, the results leave some question of the 
method ' s  ability to consistently reproduce experiment. 

In Table 2, a basis set study is presented for NO2. In all cases except the last, the 
experimental geometry  of NO2 is used. 

It  is seen that  the S T O - 4 G  basis set leads to results in excellent, but  rather  
fortuitous, agreement  with experimental values. They also compare  reasonably 
well with the results of Moores  and McWeeny  [2], who used a similar approach  
and identical basis to compute  g-shifts for NO2. Par t  of  the difference between their 
and our  results is due to their omission of AgRMC-SZ. I t  is difficult to  trace the 
source of any further discrepancy, however, as they did not  provide a complete 
b reakdown of contributions.  

Table 1. Comparison of calculated vs. experimental g-shifts (all values in ppm) 

Calculated a Gas phase b Neon matrix 
isolation c 

NO2 Ag xx 2257 3900 3300 
Ag yy --6597 - 11300 - 10300 
Ag Zz - 474 - 300 700 

CO + Ag xx - 1175 - 2400 - 3200 
Ag yr -- 1175 - 2400 -- 3200 
Ag = -- 176 - -  - 1400 

H2 O+ Ag xx - 324 200 - -  
Ag rr 16361 18800 - -  
Ag = 4402 4800 - -  

NO2 calculations done with [5s 3p 2d] basis of Sadlej [25]. Optimized geometries are 
used in each case 
b Derived from spin rotation data. Refs. [32, 35] for NO2, [33] for CO + and [34] for 
H20 + 
c Ref. [-37] for NO2 and 1-33] for CO + 
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Table 2. Calculated vs. exper imen ta l  g-shifts for NO2  (all values  in ppm) 

Ag x~' Agrr d g  ~ 

S T O - 4 G  [21] 3714 - 11503 - 307 

M I D I - 4  1-22] 4011 - 10166 - 336 

H - D  [23] 3799 - 10067 - 371 

H - D  + 2d [23, 24] 2733 - 8002 - 477 

Sadlej [25] 2762 - 7162 - 471 

Sadlej [25] 2257 - 6597 - 474 

(optimized geometry) 

Moores and McWeeny [2] b 3460 - 10274 - 218 

Exp. [32, 35] 3900 - 11300 -300 

a All ca lcu la t ions  use exper imen ta l  geomet ry  except  as no ted  

b N o t  inc lud ing  AgRMc-sz. Different  geomet ry  (RNo = 2.243 bohr ,  /-oNo = 133.9 °) 

Compared to STO-4G, larger basis sets give g-shifts with poorer agreement 
with experiment. Addition of d-functions yields sharply reduced [Ag~'~' I and [AgYr[ 
values (20-30% lower), but substantially larger [Ag~Z[ (by about 50%). 

As reported previously [41 one may observe a large geometry dependence in 
these calculations. For NO2, the change of geometries from the experimental to the 
optimized (ARNo = 0.07 bohr, A/oNo = 2.9 °) produces a change in Ag ~x from 2762 
to 2257 ppm, and Ag yy from - 7162 to - 6597 ppm. 

In Table 3, the contributions to g-tensor elements of NO2, CO + and H10 + are 
broken down into component terms. It is well known that one-electron spin-orbit 
mixing dominates the g-tensor of all molecules, except those composed of only very 
light atoms [38]. This is reproduced i n Table 3 by the large one-electron second- 
order term. The two-electron second-order term is also very important. In each 
case, its weight is consistently between 30% and 40% of the corresponding 
one-electron value. This ratio is compatible with previous findings for N O  2 [-3] and 
with spin-orbit coupling data on first-row molecules [39]. Two-electron terms 
contribute negatively compared to their corresponding one-electron terms. This 
fits the general interpretation whereby one-electron integrals describe electronic 
interaction with nuclei, while corresponding two-electron terms give the effect of 
electron-electron shielding on the former. 

First-order corrections are usually smaller than their second-order counter- 
parts. As has been stressed in a previous paper [4], however, the first-order terms 
are useful in fine tuning the g-shifts. This is especially true for cases where 
second-order effects are small or zero [38]. An example of this in the present work 
is Ag zz for NO2, experimentally found to have a negative shift of around 300 ppm. 
Even for larger basis sets, second-order contributions are insufficient to account for 
this shift, hence necessitating the first-order terms. For CO + , the second-order 
contribution to Ag ~ is zero. In this case, any net Ag ~ experimentally observed must 
be explained by first-order terms. 

As has been predicted elsewhere [4, 11] our study of gauge dependence finds the 
problem to be diminished through use of larger basis sets. In Fig. 1, the change in 
NOz g-tensor elements for a gauge transformation from C = (0, 0, 0) to C = (1, 1, 1) 
bohr for several basis sets is shown. We find that the gauge dependence decreases in 
a largely monotonic fashion with basis set improvement. 

The small gauge dependences represent a significant improvement over our 
previous work [4]. Both one- and two-electron effects are now included in the 
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Table 3. Contributions to the g-tensor elements of NO2, CO + and H20+a 

(all values in ppm) 

NO b CO + H2 O+ 

A ggMc- sz 

AgGc-sz (le) 

A goc - sz (2e) 

Ag2o (le) 

A 920 (2e) 

Total 

- 287 - 192 - 287 

(xx) 260 198 98 
(yy) 234 198 201 
(zz) 139 92 200 

(xx) - 191 - 115 - 135 
(yy) -- 57 - 115 -- 153 
(zz) -- 164 -- 76 -- 156 

(xx) 3389 -- 1556 0 
(yy) -- 9627 -- 1556 23326 
(zz) -- 278 0 6591 

(xx) - 914 503 0 
(yy) 3140 503 - 6716 
(zz) 116 0 - 1946 

A# xx 2257 - -  1175 - -  324 
Ag ~y -- 6597 -- 1175 16361 
Ag = - 474 - 176 4402 

" A l l  geometries optimized 
b NOz calculations done with [5s3p2d] basis of Sadlej [25] 
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Fig. 1 Gauge dependence of Ag for NO2 using selected basis sets. All values expressed in ppm, and 
given for a gauge transformation from C = (0,0,0) to C = (1, 1, 1) bohr. Experimental geometry used 

c a l c u l a t i o n ,  a n d  d e t e r m i n a n t a l  e n e r g i e s  a re  e m p l o y e d  in  t h e  s e c o n d - o r d e r  g a u g e  
e x p a n s i o n .  As  a resu l t ,  t h e s e  g a u g e  d e p e n d e n c e  v a l u e s  a re  l ike ly  m o r e  r e l i a b l e  t h a n  
p r e v i o u s  d e t e r m i n a t i o n s .  W h i l e  p r i o r  f i n d i n g s  [ 4 ]  h a d  a s s i g n e d  d i s p r o p o r t i o n a t e l y  
l a r g e  g a u g e  d e p e n d e n c e s  to  t h e  H u z i n a g a - D u n n i n g  bas is ,  o u r  i m p r o v e d  d e s c r i p -  
t i o n  p l aces  t h e  H - D  r e s u l t s  w i t h i n  t h e  e x p e c t e d  t r e n d .  

C o m p a r i s o n  of  t h e  t w o  d i f f e ren t  p o l a r i z e d  bas i s  sets  (Sadle j  E25] a n d  H - D  + 2d 
[ 2 3 , 2 4 ] )  p r o v e s  i n t e r e s t i n g .  T h e  Sadle j  ba s i s  h a s  f o u r  p r i m i t i v e  d 's  ( c o n t r a c t e d  
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to two functions), compared to only two added to the H-D set. The H-D set, 
however, has more flexibility among valence p's ([4p] versus [3p]). 

From Fig. 1, we find that the H-D + 2d basis provides a slightly lower gauge 
dependence than Sadlej's, especially for AgrJ (231 ppm versus 269 ppm). Therefore, 
while our previous work valued the importance of polarization functions, we now 
find valence flexibility to be important as well. 

In general, the results of the gauge dependence study are encouraging. In none 
of the calculations is the gauge dependence larger than 5% of the size of the 
corresponding g-tensor element. Coupled with our choice of the ECC as gauge, our 
results may be considered to be effectively gauge invariant. 

5 Conclusions 

The focus of this work has been to produce quality ab initio calculations of 
electronic g-tensors. Our RSPT treatment, complete to second-order in all perti- 
nent magnetic interactions, seems to provide the best description, to date, of the 
electronic Zeeman effect. 

For all but very small molecules, the one-electron second-order terms are 
adequate to give a qualitative estimate of g-tensors. In order to better approximate 
experimental data, however, inclusion of other contributions becomes important. 
The two-electron second-order, for example, exerts a strongly moderating influence 
on the corresponding one-electron contribution. As well, first-order terms are 
important in explaining net shifts in g-tensor elements where the second-order 
contribution is small or zero. 

Our results for three molecules suggest that this method reproduces qualitative 
trends in the available gas phase ESR data. Our most reliable calculations, those 
with large polarized basis sets, expose discrepancies of up to 50% between experi- 
ment and theory. This shortcoming can probably be attributed to the absence of 
electron correlation in our treatment. Biindgen et al. [40] have found differences of 
about 10% between correlated and uncorrelated values for the first-order terms. 
Correlation effects on second-order terms, under current investigation [41], are 
considerably larger. 

Nonetheless, to the best of our knowledge our calculations represent the most 
complete and reliable treatment of electronic g-tensors to date. We have improved 
our previous results [4J through the incorporation of all necessary two-electron 
contributions, including the two-electron spin-Zeeman gauge correction terms for 
which we have recently derived and implemented computer code [9, 20]. 

Another improvement has been the use of ROHF wavefunctions which, unlike 
UHF, do not suffer from spin contamination. This has required the use of determi- 
nantal energies in the denominator of sum-over-states expansions rather than the 
non-unique Fock matrix eigenvalues. 

The final refinement involves a practical elimination of gauge dependence in the 
calculations. The effect of a gauge shift from C = (0, 0, 0) to C = (1, 1, 1) bohr can 
generally be reduced to below 4% of the corresponding g-shift. Specifying the 
computational origin at the molecule's electronic charge centroid should therefore 
offer a good approximation to fully gauge invariant results. 
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